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Conformational rigidity in a lattice model of proteins
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It is shown in this paper that some simulations of protein folding in lattice models, which use an incorrect
implementation of the Monte Carlo algorithm, do not converge towards thermal equilibrium. | developed a
rigorous treatment for protein folding simulation on a lattice model relying on the introduction of a parameter
standing for the rigidity of the conformations. Its properties are discussed and its role during the folding
process is elucidated. The calculation of thermal properties of small chains living on a two-dimensional lattice
is performed and a Bortz-Kalos-Lebowitz scheme is implemented in the presented method in order to study
kinetics of chains at very low temperature. The coefficients of the Arrhenius law obtained with this algorithm
are found to be in excellent agreement with the value of the main potential barrier of the system. Finally, a
scenario of the mechanisms, including the rigidity parameters, that guide a protein towards its native structure,
at medium temperature, is given.
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[. INTRODUCTION conformations. In that work, they had introduced one nor-
malization constant applied to all conformations to guarantee
Proteins are heteropolymers that exhibit surprising therdetailed balance. However, the convergence towards thermal
modynamic and kinetic properties: the conformation of low-equilibrium of such approaches has never been checked by
est free energy which is assumed to be a unique, stable, ataohg simulations and the physical meaning of the normaliza-
biologically active structur¢l] is found in very short times. tion constant has never been questioned.
A major challenge in theoretical protein folding is to under-  On the other hand, most of the kinetic studies of the pro-
stand the kinetic aspect, i.e., under physiological conditionsiein folding on lattice models have been performed using
how does a protein find its native structure in biologically Monte Carlo(MC) algorithms[27—29 applied to theHP
reasonable timef2]. Simulations using full atomistic repre- model of energy(22,30,19,26 or REM [31,32,17,33-3]
sentation of the protein and the solvent coupled to a molecugery few papers describe in detail the algorithm used to gen-
lar dynamic algorithm have been widely used to study thisyrate the trial moves in lattice models. In some of them, the
problem([3,4]. But, due to the large number of water mol- \,~ ethod applied to lattice polymers does not obey de-
gcules around a protein and the sophistication of the forC?ailed balance conditions because it used a nonsymmetric
fields used to calculate the energy of the system, such a yrobability matrix to generate the trial moves. Doubts about

proaches are very time consuming. To sample, more widel n d h b ised by S d Head
the conformational space, it is more efficient to “preaver- €S€ procedures have been raised by Sorenson and Head-
; Gordon[38] and by Kaya and Chaf20].

" th Ivent and tr it implicitl in Ivation . L . .
age” the solvent and treat it implicitly by adding solvatio In this paper, it is shown that some implementations of the

terms to the potential energy of the heteropepfiflel11]. ! : : :
But. even WitE such solvati%yn models calcﬂle?titons gf theMC algorithm for lattice models violate the detailed balance

partition function of a protein still remain illusive. conditions and that such simulations do not converge to-

It is then necessary to reduce the representation of th&ards thermal equilibrium. An attempt to refine the algo-
problem further and the lattice model is a class of coarsetithm has been recently propos¢89]. This method con-
grained models that is often used to study theoretically th&’erges towards equilibrium, but the parameters found for the
folding of a protein[12—20. In such approaches, the amino Arrhenius law disagree with the value of the main potential
acids of the chain are positioned on a sqUa221] or cubic  barrier obtained independently by a study of the phase space
[15] grid and the intrachain energy is the summation of allof the system. The purpose of this work is not to find a new
the pairwise contributions between residues. Two main difimplementation of MC method which gives shorter or longer
ferent models of potential have been widely used in simulafolding times than those obtained with other algorithm, but
tions: theHP energy model in which a monomer is either rather to solve a problem of convergence of the simulation
hydrophobic(H) or polar (P) [12,22 or the random energy towards thermal equilibrium with a correct probability distri-
model(REM) [15,23,24. For a not too large chain, the con- bution of the conformations. A rigorous treatment of the dy-
formation of minimum of energy can be easily found by namics which leads to an efficient sampling of the conforma-
exhaustive enumeratidi25] and for a large chain the native tional space, a precise calculation of kinetic parameters and
structure can be derived from selected sequefeéls Chan  the determination of the correct Arrhenius law has been in-
and Dill [19,26] simulated the folding of a protein on a lat- troduced. The introduction of a parameter depending on the
tice using theHP model where the evolution of the prob- conformations, based on a rewriting of the detailed balance
ability of occurrence of each conformation is obtained bycondition, in the algorithm implied a good convergence to-
performing products of the matrix of connections betweerwards thermal equilibrium. Moreover, the mechanism that
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FIG. 2. Hypothetical system where the number of connections
(@) (b) (©) (solid arrow$ depends on the conformations, because there is no
connection between andy. An example of a typical trajectory at

(d) (€) very high temperature can beBaByBaByByByBaByB- - -,
where 8 occurs one step over two.

chain is carried out by performing local modifications of the
conformations using MSand MS,.

As can be seen in the example shown in Fig. 1, whereas
only one move is allowed for conformatidd), 14 moves are
allowed for conformatiorie), showing that using such move
sets the number of allowed connections depends on the con-
formations. This particularity of lattice models induces non-

FIG. 1. Types of moves allowed by the algoritha} tail move,  convergence towards equilibrium in a simulation using a MC
(b) corner flip, (c) crankshaft move. The solid lines and the full algorithm, in which a modification is proposed at each step
circles are for the chain and the monomers. The dashed lines anghd is performed following a criterion of acceptaries the
the empty circles are for the bonds and the monomers of the chaitest of Metropolis, for examp)eAn illustration of this point
affected by a move. The conformation wiith the smallest number s given by the very simple three-state system shown in Fig.
(only 1) of neighbors ande) the largest numberN—2) of neigh- 2 At very high temperature, the equilibrium probabilities of
bors. the three conformations must be equal and in a simulation

the occurrence of each conformation should equal 1/3. How-
guides a chain towards its native structure at medium temever, as any proposed move is always accepted by the Me-

perature is also discussed. tropolis test at very high temperature, a typical random tra-
jectory gives a probability of occurrence of 1/2 for the
Il. MODEL AND METHOD conformationB and of 1/4 for each of conformations and

v. This problem arises from the fact that the number of
The model used in this work is a two-dimensional latticeconnections can be different for each conformation.

polymer. The self-avoiding chains composed\ainonomers The purpose of this work is to propose a correct MC
are constrained to be on a square lattice. The energy of simulation [27] for a lattice model using MSand MS,,
given conformatiorm is given by which guarantees the convergence towards thermal equilib-
rium imposed by the condition of the detailed balaf2@):
EM= > (B +BoAf”, (D P{MW(m—n)=PWW(n—m), )
i>]

where

where the functiomA{™=1, if the ith and jth monomers
interact, i.e., if they are first neighbors on the lattice, and p(efg)ocexq_E(m)/T) (3)
Ai(j””:o otherwise. TheB;;'s are the contact energy values
chosen randomly in a Gaussian distribution centered on @ the equilibrium probability of the conformatianandT is
and give the sequence of the chain. The paramBteis  the temperature. The transition probability from the state
chosen equal to-1 to favor the compact conformations to the staten can be rewritten:
[15,21.

In the MC simulations used in this paper, the sets of con- W(m—n)=WO(m—n)a(m—n), (4)
nections between conformations are those defined by Chan
and Dill [19], where the rigid rotation chain, given in Fig. whereW(®(m—n) is thea priori transition probability, i.e.,
1b(ii) of Ref.[19], has been removed. The tail mojgee the probability to select the mova—n anda(m—n) is the
Fig. 1(@] and the corner flipsee Fig. 1b)] are referred to as acceptance rate of the transition—n which indicates if it is
the move sea (MS,), the crankshaft movesee Fig. Ic)]is  performed or not. Then, with the convenient choice for the
referred to as the move sbt(MS,). The evolution of the acceptance ratio,
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FIG. 3. A part of the connection graph of the 12 monomer chain.

In MC, implementation where tha priori transition probabilities
Wy(m—n) (shown above the arroysre not symmetric because
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(@)

they depend on the number of neighbors. Such an algorithm gives a

ratio of the occurrence of the conformati@n over that of(a) two
times larger than the ratio of their equilibrium probabilities.

1

a(m—n)= ——————,
1+expAEN/T)

©)

whereAEN'=EM—EM thea priori transition probabilities
must have a symmetric form,
WO (m—n)=WO(n—m) (6)
to satisfy Eqs(2)—(5).
The total number of allowed transitions from by per-

forming a move of M$ (MS,) is notedC{™ (C{™). Some
simulations previously proposéd7], noted in the following

FIG. 4. (a) The conformation with the maximum number of
connections allowed by MS (b) The conformation with the maxi-
mum number of connections allowed by MS

CM*= max C{M}=N+2, (11)
m

Ch¥*=maxC{”}=N-7. (12)
m

as M@, violates this condition. In these simulations, at each

step of a MG implementation, a move of MS(MS;) is
always selected among ti&™ (C{™) possible ones of the
current conformatiomm with a probabilityr (1—r). Thea
priori probabilities to select the transition—n with MS,
and MS, are given by the following two equations:

mn
a

WO (m—n)=r

mn
b

(0) —(1—
Wh'(m—n)=(1-r) o
b

8

where 57"=1 (8;'"=1) if the conformationsm and n are
connected by a move of M§MS;) and 8, "=0 (&, "=0)
otherwise. As the quantitied/”)(m—n) and W®(m—n)
depend on the number of connectio®™ and C{™, of
conformationm, one obtains

WO(m—n)#WP(n—m) if cW=C{, (9

WO (m—n) =W (n—m) if cf=c{’. (10

Figure 3 shows a part of a connection graph where the prob-

abilities, W) (m—n) andW{”(m—n), depend on the con-
formationm.
To solve this problem, a normalization afpriori prob-

In the implementation, noted MC proposed in this work,
the a priori probabilities to attempt a move from conforma-
tion m to conformationn are rewritten:

r
Wgo)(m—m):CTax ‘Tn=m5amn, (13)
a
(1-r) 1-r
WP m—n =" oo at=gm7 T (14

b

and do not depend on the conformations. To fix the value of
r, it is assumed that, in contrast to a rigid rotat{d®] that
involves movement of a lot of monomers, the one and two
monomer moves are local modifications having then the
same affinity. It follows from Eqs(13) and (14) thatr/(N
+2)=(1-r)/(N-7), leading to

~ N+2 1
=on-5 9
The transition probability becomes
WO(m—n)=W(m—n)+W(m—n) (16)
mn
~5N=5 with  8M"= 50"+ op'". ()

These quantities are well symmetric and this is the main

ability of transition is introduced. The two conformations difference with MG implementation, as will be discussed at

with the largest number of neighbors using either ;M8

the end of this section.

MS, are shown in Fig. 4 and the maximum number of moves The a priori probability to attempt any move from the

allowed by MG or MS, (related to these structupesre

conformationm is then
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wi¥=0.948 wi®=0.894 w9 =0.737 . RESULTS

q 4
0.052 0.052 In order to check the accuracy of the M@ a reasonable
[ o] oo Y

5050 5052 computati_onal ti_me, it has been applie_d to a 12 monomer

' T ) chain. This chain can adopt 15037 different self-avoiding

@ ® © walk conformations nonequivalent by symmetry. Results
c®=i c® s shown in this paper are obtained for the sequence presented

in Table | for both methods. Because the acceptance ratio for

FIG. 5. A part of the connection graph of the 12 monomer Cha'n'any given connection is the same in both methods, the tran-

The conformationga), (b), and(c) are connected to, respectively, . : - . K
one, two, and fivénot shown neighbors, by MS (see text. In the sition probability of a transition is always smaller in MC

proposed method, the probability to attempt a mowgy(m— n) simulations. Then, a larger number of Monte _Carlo steps is
=1/(2N—5)=0.052, is symmetric. The probability to not attempt necessary to generate an accepted move using ka@er

a move during one ME step,w{™ , depends on the conformation. than using MG. As a result, to perform a given number of
accepted moves, the total number of MC steps must be larger

with MC*. The CPU cost of this first test is negligible com-
£0  with C(m)zcgm)Jrcém)_ pared to the Metropolis one. Then the CPU time used by
these two methods is almost equal.
(18 MC trajectories of 30 billion steps have been performed.
For some given temperatures, convergence factor

(0) ctv
2 WOm—n)=55—

This quantity is never equal to 1 and depends on the confor-

mationm. Therefore, there appears a probability of null tran-
sition C()=~/2 [PE-=™(1)]
’ m
(0)_4 cm 0 19 is computed each 100000 MC stejpis the number of MC
Wm =1-58=57 0 (19 steps andr(™(t) =n(™(t)/t, wheren(™(t) is the number of

MC steps for which the conformatiom occurs.7(M(t) is

hich is th . bability t  att t ¢ the mean occurrence of conformatiom during the firstt
which IS thea priori probabiiity to not attempt a move from steps of the MC simulations. If an algorithm fulfills the de-

the conformatiomm during one MC step. The same part of tailed balanceC(t) should tend towards 0 whetr- .

the connection graph shown on Fig. 3 is shown on Fig. 5, Results obtained with Mg are first discussed. As was

]'chLUd'”g ?O‘(’j" the (;'g'd'tt{] of ea;:h cotr_lform?ttlr?n. ﬁs. th?ﬁe seen in Fig. 3, the probability that a conformation occurs at
actors only depend on the coniormation ot the chain, Ny, ijipyim in MG, simulation is proportional to its number

ahre sequence independent. To glxe ahpl'|1y8|cal hmeanlng connections times its equilibrium probability. The values
t (%)5(_3 parameters, one must note that t € arger the ParaMetiiine mean occurrence of conformatiorfor very larget is
w;.’ is, the more MC steps are spent without attempting @then
move, thenw(?) can be viewed as the rigidity of the confor-
mationm.

In contrast to MG implementation, a M€ step of the
proposed method consists in first choosing if a move is tried
or not and, second, if a move is tried, selecting if this moveand, after normalization of the valuesof™ , the theoretical
is performed or not. limit of the convergence factor is

aMePW(1-w() for t—o

TABLE I. The B;; couplings of the Gaussian sequence used in this paper.

Bj 1 2 3 4 5 6 7 8 9 10 11 12
1 0.0 0.0 0.0 —0.631 0.0 —20.047 0.0 —0.750 0.0 —-1321 0.0 —0.529
2 0.0 0.0 0.0 0.0 —2.383 0.0 —1.492 0.0 —0.159 0.0 —1.207 0.0
3 0.0 0.0 0.0 0.0 0.0 -1171 0.0 0.122 0.0 —0.900 0.0 —0.461
4 —0.631 0.0 0.0 0.0 0.0 0.0 -—-0.458 0.0 —1.963 0.0 —1.598 0.0
5 0.0 —2.383 0.0 0.0 0.0 0.0 0.0 -—-1.568 0.0 —0.880 0.0 —0.990
6 —20.047 0.0 -1171 0.0 0.0 0.0 0.0 0.0 0.205 0.0 —1.208 0.0
7 0.0 —1.492 0.0 —0.458 0.0 0.0 0.0 0.0 0.0 -0.381 0.0 —1.892
8 —0.750 0.0 0.122 0.0 —1.568 0.0 0.0 0.0 0.0 0.0 —1.650 0.0
9 0.0 —0.159 0.0 —1.963 0.0 0.205 0.0 0.0 0.0 0.0 0.0 —0.099
10 —-1321 0.0 —0.900 0.0 —0.880 0.0 —0.381 0.0 0.0 0.0 0.0 0.0
11 0.0 —1.207 0.0 —1.598 0.0 —1.208 0.0 —1.650 0.0 0.0 0.0 0.0
12 —0.529 0.0 —0.461 0.0 —0.990 0.0 —1.892 0.0 —0.099 0.0 0.0 0.0
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-2 O L p—— using MC*, noted BKL*. The probability to reject a move
from the conformatiorm during one step is noted,, and
using Egs(4), (5), and(16), one obtains

—4 T=1.5

T=2.0
W,=1— >, W(m—n) (22)
_6 n#m
S
= =1- > Wo(m—n)a(m—n) (22)
-8 nzm
T=1.0
1 omn
-10 T-1.5 =1- . 23
oo 2N-5 n;m 1+exp AE™/T) 23
-10, T T 5
-12 : The probabilityP,,(k) to accept a move from the conforma-
7 12 17 22 27 tion m after exactlyk MC* steps is the product of the prob-

In(2) ability to reject a move during—1 MC* steps by the prob-

FIG. 6. Main plot: log-log plots of the convergence fac@it) ability to accept any move during one step,

versus the number of MC step$or different temperatures. Dashed k-1
lines: with MG, for which theW(®(m—n) prefactor andv{®) pa- Prn(k) =Wy (1= Wp). (24)

rameter are omitted. Solid lines: with MC Inset: solid line, loga- . . -
rithm of the theoretical value of the limit of the convergence factor Obviously, asw,<1, the relationsZ,_,Pn(k)=1, Ym are

versus temperaturcomputed using Eq(11)] for the commonly always satisfied. At each step of this algorithm a random

used method. The dots are the numerical values obtained by simiAteger numberk is chosen in the density of probability

lations at different temperatures using this metidadit values of ~ Pm(K), then the conformatiom is countedk times for the

the dashed lines of the main graph statistically averaged calculations and a mawve>n chosen
with the following normalized probability:

2
P (1-w)

_ (m) _ q W(m—n

cO 7 G % k& > pim) ©) Hm—n)= _— (9
4 Teq (1_Wm’) z W(m—n'
m n'#m
#0. (20)
5mn

Figure 6 shows that the MCpresent clearly the limits of 1+exp AEN/T)
convergence depending on the temperature. The curve of = S (26)
C..(T) calculated with Eq.(20) and the numerical results - -
obtained forC(t) with large values oft are in very good nzm 1+expAEN/T)

agreemen(see Fig. 6, inset This result shows that the prob-
abilities of occurrence of conformations do not converge to4is performed at the step+1 and the conformatiom be-
wards equilibrium probability computed using their Boltz- comes the new current conformation.
mann weights. As a result, MCdo not converge towards Figure 7 shows the folding times obtained by using BKL
thermal equilibrium, and then, cannot be used efficiently toat low temperature with three different simulations, follow-
calculate thermodynamic or kinetic properties. ing the choice of the first conformations set. The folding
On the same figure, MC shows a power law conver- times (,q) are defined as the average over 500 trajectories
gence:C(t)=t~ Y2 and thenC(t)—0 for t—o. This result of the number of MC steps needed to reach the lowest
shows clearly that the factors of null transitiwﬁ,?) cannot  energy conformatiorishown in Fig. 8.
be omitted in lattice simulations. They guarantee a correct The simulation T” for which the trap structure is chosen
sampling of the conformational space and the convergence @fs the first conformation of the trajectories. The trap confor-
the simulation towards thermal equilibrium. mation is defined as the one that presents the highest energy
The accuracy of M€ for kinetic studies is now consid- barrier to reach the native statgee inset of Fig. )7 The trap
ered. A major problem in protein folding investigation is the has been calculated by solving the master equation of the
calculation of the kinetic properties at low temperati88],  system with the choice afmade in this work. This structure
like relaxation or folding times. A major problem of MC (shown in Fig. 8 is the same as that found in a previous
simulations at low temperatures is that the ratio of rejectedvork [41].
moves is very large. Here, the efficiency of the algorithm is The simulation ‘E” for which the first conformations are
increased at low temperature, using a Bortz-Kalos-Lebowitzhosen at random among the extended ones, i.e., conforma-
(BKL) type algorithm[40,29], adapted to lattice simulations tions without any contact.
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FIG. 7. Main plot: logarithm of the mean folding time versus the MC steps

inverse of the temperature for the simulatiom™ (circle), “R”

(squarg, “E” (triangle. The error bars are one standard deviation d rigiditv (b he ME
about the mean. Plot in inset: schematic pathway from the trap to FIG. 8. Energy(top) and rigidity (bottom) versus the MC steps

the native(Nat) conformation through the transition st#fes) func- of a typical trajectqry of folding simulation &t=0.4, starting With
tion of the energy. Table in inset: value of the parames&sandA the trap conformation. The trap and the natiidat) conformations

of the Arrhenius laws,o(T) =A exp(E/T) for the “T,”* E,” and are shown. The empty circle is for the first monomer.
“ R” simulations (see text The regressions are performed over the
points on the solids linelow temperaturg thermal equilibrium, but conformations of the chain do not
occur in proportion to their Boltzmann weights.
The simulation ‘R” that starts with conformations chosen  During the third and last phase that occurs after the relax-
at random among the whole conformational space. ation time, all the structures occur with a probability propor-
The energy difference between the trap and the transitiotional to their Boltzmann weightsr(™=P{?.
state equala E=4.53 (inset of Fig. 7. In each of the three However, the biological function and activity of a protein
simulations, Arrhenius law is recovered,tiq(T) are closely related to the shape of its native conformation.
=Aexp(@E/T) at low temperature T=0.24, 0.22, 0.20, Then, from a biological point of view, the folding time is a
0.18, for the folding times computed with the MGnethod.  more meaningful quantity than the relaxation time, because it
The results of6E, shown in the table in the inset of Fig. 7, characterizes the time needed to reach the biologically active
are in very good agreemefless than 1% for th@ simula-  conformation.
tion) with the value ofAE and strongly support the proposed  To study the kinetic path followed by the chain, M@ a
method for the calculation of Arrhenius law parameters.  powerful and well adapted method, even during the folding
or the relaxation times of the chain. The probability to per-
IV. DISCUSSION form a move is a function of the difference of energy be-
tween the connected structures and of the temperature. On
In the following, we will focus on the properties of the the other hand, tha priori probability to attempt a move is
conformational rigidityw$’ and on their role during the related to the rigidity of each conformation. Then, it does not
folding processes. depend on the temperature, whereas the probability to accept
During the folding time, the chain is not at thermal equi- the move is temperature dependent. This fundamental differ-
librium with the solvent bulk. At low temperature, only the ence between the two mechanisms involved in the procedure
native conformation is relevant; however, it does not appeaimplicates that the kinetic path of folding presents qualitative
during the folding time except at the ultimate step, as the endifferences depending on the temperature of the simulation.

of the folding time is given by\"®{(t;,,q) = 1. This period can In order to understand the mechanism of folding in the
be viewed as the first stage of the process of convergenaange of temperature where the protein is biologically active,
towards thermal equilibrium. i.e., at medium temperature, the kinetic properties of the

During the second phase, the system evolves towardshain at high and low temperatures are first described inde-
thermal equilibrium by increasing the occurrence of the napendently below. These extremum cases are of theoretical
tive state, until a good accordance with the equilibrium prob-interest, but also give an insight into of the property of the
ability is found. Then, the relaxation time can be defined ashain at medium temperature.
the time ty that satisfiesm™(t,e) = NNt )/tre=Poc. At high temperature, following Eq(5), the acceptance
During this relaxation period, the system evolves towards theatio isa(m—n)=0.5 for all the connectionm—n. Then,
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the evolution of the chain is only guided by the values of the 0.15
rigidity of the conformations. When a structure that presents =

a large number of connections, i.e., having small values of '
w{™ occurs, a new transition takes place very quickly. On
the contrary, conformations with very few connections are
rarely reached, but when such structures occur, many MC
steps are needed before trying a move. However, in any case
for long simulations, all the conformations have the same
probability to occur and they are counted during the same
number of MC steps. The less rigid structures are more
often reached, but a move is accepted quicker than from
more rigid structures. Then, at high temperature, the mecha-
nism that guides the chain towards the native structure is 0.00 Lomton : 5
simply a random walk process that takes into account the 0 1 2 3 4x10
rigidity of the conformations. This random process is par- MC steps

ticular because whereas all the structures have the same

probability to occur on an average, they have not the same

probability to be reached during the MGimulation. More- FIG. 9. Frequency of the accepted moves, computed on the 20
over, the average time spent, at each time that a given cofSt accepted transitionsee tex, in the MC' simulation atT

formation is reached, is also dependent on the conformation; 04 as @ function of the MCsteps.

The chain finds the native conformation following this ran- gimilar properties and a typical trajectory is shown in Fig. 8.
dom walk adapted to lattice model. Omission of rigidity pa- The native and the trap conformations have very low energy
rameters would lead to an increase in the probability of 0c{E,,= —11.5031,Ey,,,= —8.9627), and are also very com-
currence of the extended conformations and would give @act structuregfive contacts for the trap and six for the na-
wrong view of the mechanism of the kinetics of folding at tive conformation, and then, they are very rigidw(%,
high temperature. =W(T?;p=0.894). As the trap is the first conformation of each
However, the case of the folding process at high temperagrajectory, no transition is accepted during a lot of MC
ture only presents a theoretical interest because, in this casgteps. As the allowed transitions are only a local modification
the chain is always in a denatured phase and when the nativ# the chain, when a move is selected and accepted, the chain
state is reached, it is only for a very short time and then theccurs in a new conformation of low energy and of still
molecule is not really biologically active. relatively high compacity and then high rigidity. As the tran-
At low temperature, the acceptance ratio is very selectivesition of the highest probability from this conformation is the
When temperature goes to zee§gm—n)—0 if AE>0 and  way back to the trap conformation, there are oscillations of
a(m—n)—1 if AE<O0, and the acceptance ratio plays avery low frequencies in the lower part of the conformational
more important role in the selection of the transitions than irvalley of the trap between the trap and the few conformations
the previous case. The rigidities of the conformations stillconnected to it. The frequency of the accepted moves, com-
play a role, but minor, in the folding process at low temperaputed over the ladtl; moves(hereN;=20), is defined abl;
ture. However, an accepted transition cannot lead to an individed by the number of ME steps needed to accept the
crease in the energy and all the moves undertaken towardast N; moves and is shown in Fig. 9. These moves of low
conformations of lower energy have the same probability tfrequencies in the trap valley occur during the 2 10" first
be performed because,g-o(m—n)—1. The chain is steps, afterwards a conformation among the huge set of tran-
mostly trapped in local minima and the kinetics of folding is sition state is reached and permits to escape from this con-
very slow. formational valley. The transition states, which exhibit com-
In nature, at very low temperature, the solvent aroundnon propertiesfew intrachain contacts, great flexibilities,
protein is converted into ice. Then, kinetics of protein fold-and high energigs have a small equilibrium probability of
ing is simply frozen by the crystallization of the solvent. The occurrence, whereas they are easily accessible at a topologi-
potential used in this work is temperature independent andal point of view as they are not very rigid. On the other
does not well mimic the effect of the solvent at low tempera-hand, the mean time of occurrence of these conformations is
tures. Then, investigations on the mechanisms of the proteiiery short as they are very flexible. Then, the chain evolves
folding at very low temperature remain illusive with such from valley to valley following this mechanism. As the
potential. However, this study, as well as high-temperaturgjround states of the other valleys have smaller rigidities and
simulations, present theoretical approaches very useful to umigher energies than the trap of the system, the oscillations
derstand the folding of the proteins at medium temperatureare of higher frequencies. When the main valley, i.e., the
At medium temperature, the evolution of the chain to-valley of the native state, is reached, the frequencies of tran-
wards its native structure is dictated by both rigidities andsitions are very high. In this ultimate funnel, the chain folds
energy differences. In order to understand the folding protowards the native structure by minimizing its energy. But, as
cesses, many kinetic paths beginning with the trap conformahe chain is driving towards the native structure, its confor-
tion and ending with the native structure have been commations becomes more and more compact. The folding path-
puted atT=0.4, using MC simulations. They all exhibit way admits then less and less possibilities of connections

0.10

0.05

frequency (MC step

061912-7



OLIVIER COLLET PHYSICAL REVIEW E 67, 061912 (2003

E=-7.961 E=-7.5636 E=-7.0727 12
nﬂ°>=o.7890\ / w9=0.789 \/ W0=0.789
E=-9.6110 E=-9.4557
WO=0,842 \ / WO=0,842 4
/Nat
O o 1 ) ) 1
UU -2 -10 -8 -6 -4 =2
E

E=-11.5031
w9=0.895

In[n(E)]
®

FIG. 11. Logarithm of the occurrence of the eneEggluring the

FIG. 10. Last connections between the conformations leading t(gOId'ng times of ten trajectories.

the native structure. ) ) ] .
the folding time defined above. The conformations of low

between conformations that are more and more rigid, as ca@nergy which are undersampled will mostly occur during the
be seen on the last part of the connection graph shown in Figecond stage of the relaxation, appearing for times larger
10. However, most of the attempted moves are accepted arifian trq and smaller thart, by performing a sampling
they guide the chain towards the lower part of the funnel inmainly localized in the native valley. Fd&t,, each con-

a relatively few steps. In other words, the kinetics of foldingformation occurs with its equilibrium probability, as is
is slowed down as the chain goes down the funnel, althougshown in Fig. 6.

it evolves harshly towards the native structure, with a rela-

tively high accepted move frequency compared to the ac- V. CONCLUSION

cepted move frequencies in others valleys.

Ten simulations have been carried out at the same tem- The results presented in this work emphasize that the pro-
perature T=0.4) and the logarithm of the occurrence of posed MC method is well adapted to study the dynamics of
conformations with energf during the folding time period protein folding. It has been shown that not only the differ-
versus the energy has been computed and plotted in Fig. 1&nce of energies between the conformations but also the ri-
In a simulation performed at thermal equilibrium with a ther- gidity of the conformations have to be taken into account in
mostat, a linear relation between both quantities would havéhe MC* simulation in order to sample correctly the confor-
been found. It appears clearly that during the folding timemational space. Moreover, the BKL algorithm has been
only the part of the spectrum above the dashed line is welimplemented and would be a good technique to provide low-
sampled. A linear regression of this region of the spectrumemperature studies and rollover behaVi2] observed for
givesn(E) =A exp(—E/T*) with T* =0.48. The value oT* small single domain proteins for which the folding arm of
is close to the temperature of the simulation, i®e=0.40, the chevron plot is not linear under native conditions.
showing that the subspace above the dashed lines is at ther- Kinetic paths have been studied and some general features
mal equilibrium with the bath. The coefficiedt is not the to give an insight into the mechanism that drives a protein
inverse of the partition function of the whole system becaus¢owards its native structure at medium temperature. During
the conformations of low energies are badly sampled. It cathe folding time of this process, only a part of the conforma-
be seen as the inverse of a “reduced partition function” com+ional space is sampled in proportion to the Boltzmann
puted on the subspace of conformations at equilibrium withweights of the conformations. Afterwards, between the fold-
the bath temperature. The conformations of this region being and relaxation times, the occurrence of the conformations
long to valleys other than that of the native state and theywf low energy increases and all the conformations occur in
occur with probabilities larger than, but proportional to, their proportion to their Boltzmann weights and the thermal equi-
equilibrium probabilities. Then, at this stage it can be asdibrium of the chain is reached.
sumed that the subsystem consisting of all the valleys, except Finally, this method had been applied only to a short
that of the native state, is at thermal equilibrium. The timechain in order to check its efficiency, but it is easily appli-
needed to reach this partial equilibrium corresponds taable to a longer chain on a two- or three-dimensional lattice.
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