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Conformational rigidity in a lattice model of proteins

Olivier Collet
Equipe de Dynamique des Assemblages Membranaires, UMR CNRS 7565, Faculte´ des Sciences, Universite´ Henri Poincaré-Nancy 1,

54506 Vandoeuvre-le`s-Nancy, France
~Received 22 January 2003; published 26 June 2003!

It is shown in this paper that some simulations of protein folding in lattice models, which use an incorrect
implementation of the Monte Carlo algorithm, do not converge towards thermal equilibrium. I developed a
rigorous treatment for protein folding simulation on a lattice model relying on the introduction of a parameter
standing for the rigidity of the conformations. Its properties are discussed and its role during the folding
process is elucidated. The calculation of thermal properties of small chains living on a two-dimensional lattice
is performed and a Bortz-Kalos-Lebowitz scheme is implemented in the presented method in order to study
kinetics of chains at very low temperature. The coefficients of the Arrhenius law obtained with this algorithm
are found to be in excellent agreement with the value of the main potential barrier of the system. Finally, a
scenario of the mechanisms, including the rigidity parameters, that guide a protein towards its native structure,
at medium temperature, is given.
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I. INTRODUCTION

Proteins are heteropolymers that exhibit surprising th
modynamic and kinetic properties: the conformation of lo
est free energy which is assumed to be a unique, stable,
biologically active structure@1# is found in very short times
A major challenge in theoretical protein folding is to unde
stand the kinetic aspect, i.e., under physiological conditio
how does a protein find its native structure in biologica
reasonable times@2#. Simulations using full atomistic repre
sentation of the protein and the solvent coupled to a mole
lar dynamic algorithm have been widely used to study t
problem @3,4#. But, due to the large number of water mo
ecules around a protein and the sophistication of the fo
fields used to calculate the energy of the system, such
proaches are very time consuming. To sample, more wid
the conformational space, it is more efficient to ‘‘preav
age’’ the solvent and treat it implicitly by adding solvatio
terms to the potential energy of the heteropeptide@5–11#.
But, even with such solvation models, calculations of
partition function of a protein still remain illusive.

It is then necessary to reduce the representation of
problem further and the lattice model is a class of coar
grained models that is often used to study theoretically
folding of a protein@12–20#. In such approaches, the amin
acids of the chain are positioned on a square@12,21# or cubic
@15# grid and the intrachain energy is the summation of
the pairwise contributions between residues. Two main
ferent models of potential have been widely used in simu
tions: theHP energy model in which a monomer is eith
hydrophobic~H! or polar ~P! @12,22# or the random energy
model~REM! @15,23,24#. For a not too large chain, the con
formation of minimum of energy can be easily found
exhaustive enumeration@25# and for a large chain the nativ
structure can be derived from selected sequences@24#. Chan
and Dill @19,26# simulated the folding of a protein on a la
tice using theHP model where the evolution of the prob
ability of occurrence of each conformation is obtained
performing products of the matrix of connections betwe
1063-651X/2003/67~6!/061912~9!/$20.00 67 0619
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conformations. In that work, they had introduced one n
malization constant applied to all conformations to guaran
detailed balance. However, the convergence towards the
equilibrium of such approaches has never been checke
long simulations and the physical meaning of the normali
tion constant has never been questioned.

On the other hand, most of the kinetic studies of the p
tein folding on lattice models have been performed us
Monte Carlo ~MC! algorithms @27–29# applied to theHP
model of energy@22,30,19,26# or REM @31,32,17,33–37#.
Very few papers describe in detail the algorithm used to g
erate the trial moves in lattice models. In some of them,
MC method applied to lattice polymers does not obey
tailed balance conditions because it used a nonsymm
probability matrix to generate the trial moves. Doubts ab
these procedures have been raised by Sorenson and H
Gordon@38# and by Kaya and Chan@20#.

In this paper, it is shown that some implementations of
MC algorithm for lattice models violate the detailed balan
conditions and that such simulations do not converge
wards thermal equilibrium. An attempt to refine the alg
rithm has been recently proposed@39#. This method con-
verges towards equilibrium, but the parameters found for
Arrhenius law disagree with the value of the main poten
barrier obtained independently by a study of the phase sp
of the system. The purpose of this work is not to find a n
implementation of MC method which gives shorter or long
folding times than those obtained with other algorithm, b
rather to solve a problem of convergence of the simulat
towards thermal equilibrium with a correct probability distr
bution of the conformations. A rigorous treatment of the d
namics which leads to an efficient sampling of the conform
tional space, a precise calculation of kinetic parameters
the determination of the correct Arrhenius law has been
troduced. The introduction of a parameter depending on
conformations, based on a rewriting of the detailed bala
condition, in the algorithm implied a good convergence
wards thermal equilibrium. Moreover, the mechanism t
©2003 The American Physical Society12-1
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guides a chain towards its native structure at medium t
perature is also discussed.

II. MODEL AND METHOD

The model used in this work is a two-dimensional latti
polymer. The self-avoiding chains composed ofN monomers
are constrained to be on a square lattice. The energy
given conformationm is given by

E(m)5 (
i . j 11

~Bi j 1B0!D i j
(m) , ~1!

where the functionD i j
(m)51, if the i th and j th monomers

interact, i.e., if they are first neighbors on the lattice, a
D i j

(m)50 otherwise. TheBi j ’s are the contact energy value
chosen randomly in a Gaussian distribution centered o
and give the sequence of the chain. The parameterB0 is
chosen equal to21 to favor the compact conformation
@15,21#.

In the MC simulations used in this paper, the sets of c
nections between conformations are those defined by C
and Dill @19#, where the rigid rotation chain, given in Fig
1b~ii ! of Ref. @19#, has been removed. The tail move@see
Fig. 1~a!# and the corner flip@see Fig. 1~b!# are referred to as
the move seta (MSa), the crankshaft move@see Fig. 1~c!# is
referred to as the move setb (MSb). The evolution of the

FIG. 1. Types of moves allowed by the algorithm:~a! tail move,
~b! corner flip, ~c! crankshaft move. The solid lines and the fu
circles are for the chain and the monomers. The dashed lines
the empty circles are for the bonds and the monomers of the c
affected by a move. The conformation with~d! the smallest numbe
~only 1! of neighbors and~e! the largest number (N22) of neigh-
bors.
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chain is carried out by performing local modifications of t
conformations using MSa and MSb .

As can be seen in the example shown in Fig. 1, wher
only one move is allowed for conformation~d!, 14 moves are
allowed for conformation~e!, showing that using such mov
sets the number of allowed connections depends on the
formations. This particularity of lattice models induces no
convergence towards equilibrium in a simulation using a M
algorithm, in which a modification is proposed at each s
and is performed following a criterion of acceptance~as the
test of Metropolis, for example!. An illustration of this point
is given by the very simple three-state system shown in F
2. At very high temperature, the equilibrium probabilities
the three conformations must be equal and in a simula
the occurrence of each conformation should equal 1/3. H
ever, as any proposed move is always accepted by the
tropolis test at very high temperature, a typical random t
jectory gives a probability of occurrence of 1/2 for th
conformationb and of 1/4 for each of conformationsa and
g. This problem arises from the fact that the number
connections can be different for each conformation.

The purpose of this work is to propose a correct M
simulation @27# for a lattice model using MSa and MSb ,
which guarantees the convergence towards thermal equ
rium imposed by the condition of the detailed balance@29#:

Peq
(m)W~m→n!5Peq

(n)W~n→m!, ~2!

where

Peq
(m)}exp~2E(m)/T! ~3!

is the equilibrium probability of the conformationm andT is
the temperature. The transition probability from the statem
to the staten can be rewritten:

W~m→n!5W(0)~m→n!a~m→n!, ~4!

whereW(0)(m→n) is thea priori transition probability, i.e.,
the probability to select the movem→n anda(m→n) is the
acceptance rate of the transitionm→n which indicates if it is
performed or not. Then, with the convenient choice for t
acceptance ratio,

nd
in

FIG. 2. Hypothetical system where the number of connecti
~solid arrows! depends on the conformations, because there is
connection betweena andg. An example of a typical trajectory a
very high temperature can beababgbabgbgbgbabgb•••,
whereb occurs one step over two.
2-2
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CONFORMATIONAL RIGIDITY IN A LATTICE MODE L . . . PHYSICAL REVIEW E 67, 061912 ~2003!
a~m→n!5
1

11exp~DEn
m/T!

, ~5!

whereDEn
m5E(n)2E(m), thea priori transition probabilities

must have a symmetric form,

W(0)~m→n!5W(0)~n→m! ~6!

to satisfy Eqs.~2!–~5!.
The total number of allowed transitions fromm by per-

forming a move of MSa (MSb) is notedCa
(m) (Cb

(m)). Some
simulations previously proposed@17#, noted in the following
as MC0, violates this condition. In these simulations, at ea
step of a MC0 implementation, a move of MSa (MSb) is
always selected among theCa

(m) (Cb
(m)) possible ones of the

current conformationm with a probability r (12r ). The a
priori probabilities to select the transitionm→n with MSa
and MSb are given by the following two equations:

Wa
(0)~m→n!5r

da
mn

Ca
(m)

, ~7!

Wb
(0)~m→n!5~12r !

db
mn

Cb
(m)

, ~8!

whereda
mn51 (db

mn51) if the conformationsm and n are
connected by a move of MSa (MSb) andda

mn50 (db
mn50)

otherwise. As the quantitiesWa
(0)(m→n) and Wb

(0)(m→n)
depend on the number of connections,Ca

(m) and Cb
(m) , of

conformationm, one obtains

Wa
(0)~m→n!ÞWa

(0)~n→m! if Ca
(m)ÞCa

(n) , ~9!

Wb
(0)~m→n!ÞWb

(0)~n→m! if Cb
(m)ÞCb

(n) . ~10!

Figure 3 shows a part of a connection graph where the p
abilities,Wa

(0)(m→n) andWb
(0)(m→n), depend on the con

formationm.
To solve this problem, a normalization ofa priori prob-

ability of transition is introduced. The two conformation
with the largest number of neighbors using either MSa or
MSb are shown in Fig. 4 and the maximum number of mov
allowed by MSa or MSb ~related to these structures! are

FIG. 3. A part of the connection graph of the 12 monomer cha
In MC0 implementation where thea priori transition probabilities
W0(m→n) ~shown above the arrows! are not symmetric becaus
they depend on the number of neighbors. Such an algorithm giv
ratio of the occurrence of the conformation~b! over that of~a! two
times larger than the ratio of their equilibrium probabilities.
06191
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Ca
max5max

m
$Ca

(m)%5N12, ~11!

Cb
max5max

m
$Cb

(m)%5N27. ~12!

In the implementation, noted MC* , proposed in this work,
the a priori probabilities to attempt a move from conform
tion m to conformationn are rewritten:

Wa
(0)~m→n!5

r

Ca
max

da
mn5

r

N12
da

mn , ~13!

Wb
(0)~m→n!5

~12r !

Cb
max

db
mn5

12r

N27
db

mn ~14!

and do not depend on the conformations. To fix the value
r, it is assumed that, in contrast to a rigid rotation@19# that
involves movement of a lot of monomers, the one and t
monomer moves are local modifications having then
same affinity. It follows from Eqs.~13! and ~14! that r /(N
12)5(12r )/(N27), leading to

r 5
N12

2N25
. ~15!

The transition probability becomes

W(0)~m→n!5Wa
(0)~m→n!1Wb

(0)~m→n! ~16!

5
dmn

2N25
with dmn5da

mn1db
mn . ~17!

These quantities are well symmetric and this is the m
difference with MC0 implementation, as will be discussed
the end of this section.

The a priori probability to attempt any move from th
conformationm is then

.

a

FIG. 4. ~a! The conformation with the maximum number o
connections allowed by MSa . ~b! The conformation with the maxi-
mum number of connections allowed by MSb .
2-3
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(
nÞm

W(0)~m→n!5
C(m)

2N25
Þ0 with C(m)5Ca

(m)1Cb
(m) .

~18!

This quantity is never equal to 1 and depends on the con
mationm. Therefore, there appears a probability of null tra
sition,

wm
(0)512

C(m)

2N25
Þ0, ~19!

which is thea priori probability to not attempt a move from
the conformationm during one MC* step. The same part o
the connection graph shown on Fig. 3 is shown on Fig
including now the rigidity of each conformation. As the
factors only depend on the conformation of the chain, th
are sequence independent. To give a physical meanin
these parameters, one must note that the larger the param
wm

(0) is, the more MC* steps are spent without attempting
move, thenwm

(0) can be viewed as the rigidity of the confo
mationm.

In contrast to MC0 implementation, a MC* step of the
proposed method consists in first choosing if a move is tr
or not and, second, if a move is tried, selecting if this mo
is performed or not.

FIG. 5. A part of the connection graph of the 12 monomer cha
The conformations~a!, ~b!, and ~c! are connected to, respectivel
one, two, and five~not shown! neighbors, by MSa ~see text!. In the
proposed method, the probability to attempt a move,W0(m→n)
51/(2N25)50.052, is symmetric. The probability to not attem
a move during one MC* step,w0

(m) , depends on the conformation
06191
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III. RESULTS

In order to check the accuracy of the MC* in a reasonable
computational time, it has been applied to a 12 monom
chain. This chain can adopt 15 037 different self-avoidi
walk conformations nonequivalent by symmetry. Resu
shown in this paper are obtained for the sequence prese
in Table I for both methods. Because the acceptance ratio
any given connection is the same in both methods, the t
sition probability of a transition is always smaller in MC*
simulations. Then, a larger number of Monte Carlo steps
necessary to generate an accepted move using MC* rather
than using MC0. As a result, to perform a given number o
accepted moves, the total number of MC steps must be la
with MC* . The CPU cost of this first test is negligible com
pared to the Metropolis one. Then the CPU time used
these two methods is almost equal.

MC trajectories of 30 billion steps have been performe
For some given temperatures, convergence factor

C~ t !5A(
m

@Peq
(m)2p (m)~ t !#2

is computed each 100 000 MC stepst is the number of MC
steps andp (m)(t)5n(m)(t)/t, wheren(m)(t) is the number of
MC steps for which the conformationm occurs.p (m)(t) is
the mean occurrence of conformationm during the firstt
steps of the MC simulations. If an algorithm fulfills the d
tailed balance,C(t) should tend towards 0 whent→`.

Results obtained with MC0 are first discussed. As wa
seen in Fig. 3, the probability that a conformation occurs
equilibrium in MC0 simulation is proportional to its numbe
of connections times its equilibrium probability. The valu
of the mean occurrence of conformationm for very larget is
then

p`
(m)}Peq

(m)~12wm
(0)! for t→`

and, after normalization of the values ofp`
(m) , the theoretical

limit of the convergence factor is

.

TABLE I. The Bi j couplings of the Gaussian sequence used in this paper.

Bi j 1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 0.0 0.0 20.631 0.0 220.047 0.0 20.750 0.0 21.321 0.0 20.529
2 0.0 0.0 0.0 0.0 22.383 0.0 21.492 0.0 20.159 0.0 21.207 0.0
3 0.0 0.0 0.0 0.0 0.0 21.171 0.0 0.122 0.0 20.900 0.0 20.461
4 20.631 0.0 0.0 0.0 0.0 0.0 20.458 0.0 21.963 0.0 21.598 0.0
5 0.0 22.383 0.0 0.0 0.0 0.0 0.0 21.568 0.0 20.880 0.0 20.990
6 220.047 0.0 21.171 0.0 0.0 0.0 0.0 0.0 0.205 0.0 21.208 0.0
7 0.0 21.492 0.0 20.458 0.0 0.0 0.0 0.0 0.0 20.381 0.0 21.892
8 20.750 0.0 0.122 0.0 21.568 0.0 0.0 0.0 0.0 0.0 21.650 0.0
9 0.0 20.159 0.0 21.963 0.0 0.205 0.0 0.0 0.0 0.0 0.0 20.099

10 21.321 0.0 20.900 0.0 20.880 0.0 20.381 0.0 0.0 0.0 0.0 0.0
11 0.0 21.207 0.0 21.598 0.0 21.208 0.0 21.650 0.0 0.0 0.0 0.0
12 20.529 0.0 20.461 0.0 20.990 0.0 21.892 0.0 20.099 0.0 0.0 0.0
2-4
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C~ t ! →
t→`

C`~T!5A(
m S Peq

(m)2
Peq

(m)~12wm
(0)!

(
m8

Peq
(m8)~12wm8

(0)
!D 2

Þ0. ~20!

Figure 6 shows that the MC0 present clearly the limits o
convergence depending on the temperature. The curv
C`(T) calculated with Eq.~20! and the numerical result
obtained forC(t) with large values oft are in very good
agreement~see Fig. 6, inset!. This result shows that the prob
abilities of occurrence of conformations do not converge
wards equilibrium probability computed using their Bolt
mann weights. As a result, MC0 do not converge toward
thermal equilibrium, and then, cannot be used efficiently
calculate thermodynamic or kinetic properties.

On the same figure, MC* shows a power law conver
gence:C(t)}t21/2 and thenC(t)→0 for t→`. This result
shows clearly that the factors of null transitionwm

(0) cannot
be omitted in lattice simulations. They guarantee a corr
sampling of the conformational space and the convergenc
the simulation towards thermal equilibrium.

The accuracy of MC* for kinetic studies is now consid
ered. A major problem in protein folding investigation is th
calculation of the kinetic properties at low temperature@35#,
like relaxation or folding times. A major problem of MC
simulations at low temperatures is that the ratio of rejec
moves is very large. Here, the efficiency of the algorithm
increased at low temperature, using a Bortz-Kalos-Lebow
~BKL ! type algorithm@40,29#, adapted to lattice simulation

FIG. 6. Main plot: log-log plots of the convergence factorC(t)
versus the number of MC stepst for different temperatures. Dashe
lines: with MC0 for which theW(0)(m→n) prefactor andwm

(0) pa-
rameter are omitted. Solid lines: with MC* . Inset: solid line, loga-
rithm of the theoretical value of the limit of the convergence fac
versus temperature@computed using Eq.~11!# for the commonly
used method. The dots are the numerical values obtained by s
lations at different temperatures using this method~limit values of
the dashed lines of the main graph!.
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using MC* , noted BKL* . The probability to reject a move
from the conformationm during one step is notedwm and
using Eqs.~4!, ~5!, and~16!, one obtains

wm512 (
nÞm

W~m→n! ~21!

512 (
nÞm

W0~m→n!a~m→n! ~22!

512
1

2N25 (
nÞm

dmn

11exp~DEn
m/T!

. ~23!

The probabilityPm(k) to accept a move from the conforma
tion m after exactlyk MC* steps is the product of the prob
ability to reject a move duringk21 MC* steps by the prob-
ability to accept any move during one step,

Pm~k!5wm
k21~12wm!. ~24!

Obviously, aswm,1, the relations(k51
` Pm(k)51, ;m are

always satisfied. At each step of this algorithm a rand
integer numberk is chosen in the density of probabilit
Pm(k), then the conformationm is countedk times for the
statistically averaged calculations and a movem→n chosen
with the following normalized probability:

t~m→n!5
W~m→n!

(
n8Þm

W~m→n8

~25!

5

dmn

11exp~DEn
m/T!

(
n8Þm

dmn8

11exp~DEn8
m /T!

~26!

is performed at the stepk11 and the conformationn be-
comes the new current conformation.

Figure 7 shows the folding times obtained by using BKL*
at low temperature with three different simulations, follow
ing the choice of the first conformations set. The foldi
times (t fold) are defined as the average over 500 trajecto
of the number of MC* steps needed to reach the lowe
energy conformation~shown in Fig. 8!.

The simulation ‘‘T’’ for which the trap structure is chose
as the first conformation of the trajectories. The trap conf
mation is defined as the one that presents the highest en
barrier to reach the native state~see inset of Fig. 7!. The trap
has been calculated by solving the master equation of
system with the choice ofr made in this work. This structure
~shown in Fig. 8! is the same as that found in a previo
work @41#.

The simulation ‘‘E’’ for which the first conformations are
chosen at random among the extended ones, i.e., confo
tions without any contact.

r

u-
2-5
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The simulation ‘‘R’’ that starts with conformations chose
at random among the whole conformational space.

The energy difference between the trap and the transi
state equalsDE54.53 ~inset of Fig. 7!. In each of the three
simulations, Arrhenius law is recovered,t fold(T)
5A exp(dE/T) at low temperature (T50.24, 0.22, 0.20,
0.18!, for the folding times computed with the MC* method.
The results ofdE, shown in the table in the inset of Fig. 7
are in very good agreement~less than 1% for theT simula-
tion! with the value ofDE and strongly support the propose
method for the calculation of Arrhenius law parameters.

IV. DISCUSSION

In the following, we will focus on the properties of th
conformational rigiditywm

(0) and on their role during the
folding processes.

During the folding time, the chain is not at thermal equ
librium with the solvent bulk. At low temperature, only th
native conformation is relevant; however, it does not app
during the folding time except at the ultimate step, as the
of the folding time is given bynNat(t fold)51. This period can
be viewed as the first stage of the process of converge
towards thermal equilibrium.

During the second phase, the system evolves towa
thermal equilibrium by increasing the occurrence of the
tive state, until a good accordance with the equilibrium pro
ability is found. Then, the relaxation time can be defined
the time t rel that satisfiespNat(t rel)5nNat(t rel)/t rel5Peq

Nat.
During this relaxation period, the system evolves towards

FIG. 7. Main plot: logarithm of the mean folding time versus t
inverse of the temperature for the simulation ‘‘T’’ ~circle!, ‘‘ R’’
~square!, ‘‘ E’’ ~triangle!. The error bars are one standard deviati
about the mean. Plot in inset: schematic pathway from the tra
the native~Nat! conformation through the transition state~TS! func-
tion of the energy. Table in inset: value of the parametersdE andA
of the Arrhenius lawst fold(T)5A exp(dE/T) for the ‘‘T, ’’ ‘‘ E, ’’ and
‘‘ R’’ simulations ~see text!. The regressions are performed over t
points on the solids lines~low temperature!.
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thermal equilibrium, but conformations of the chain do n
occur in proportion to their Boltzmann weights.

During the third and last phase that occurs after the re
ation time, all the structures occur with a probability propo
tional to their Boltzmann weights,p (m)5Peq

(m) .
However, the biological function and activity of a prote

are closely related to the shape of its native conformati
Then, from a biological point of view, the folding time is
more meaningful quantity than the relaxation time, becaus
characterizes the time needed to reach the biologically ac
conformation.

To study the kinetic path followed by the chain, MC* is a
powerful and well adapted method, even during the fold
or the relaxation times of the chain. The probability to p
form a move is a function of the difference of energy b
tween the connected structures and of the temperature
the other hand, thea priori probability to attempt a move is
related to the rigidity of each conformation. Then, it does n
depend on the temperature, whereas the probability to ac
the move is temperature dependent. This fundamental di
ence between the two mechanisms involved in the proced
implicates that the kinetic path of folding presents qualitat
differences depending on the temperature of the simulat

In order to understand the mechanism of folding in t
range of temperature where the protein is biologically acti
i.e., at medium temperature, the kinetic properties of
chain at high and low temperatures are first described in
pendently below. These extremum cases are of theore
interest, but also give an insight into of the property of t
chain at medium temperature.

At high temperature, following Eq.~5!, the acceptance
ratio is a(m→n)50.5 for all the connectionsm→n. Then,

FIG. 8. Energy~top! and rigidity~bottom! versus the MC* steps
of a typical trajectory of folding simulation atT50.4, starting with
the trap conformation. The trap and the native~Nat! conformations
are shown. The empty circle is for the first monomer.
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the evolution of the chain is only guided by the values of
rigidity of the conformations. When a structure that prese
a large number of connections, i.e., having small values
w0

(m) occurs, a new transition takes place very quickly.
the contrary, conformations with very few connections a
rarely reached, but when such structures occur, many M*
steps are needed before trying a move. However, in any c
for long simulations, all the conformations have the sa
probability to occur and they are counted during the sa
number of MC* steps. The less rigid structures are mo
often reached, but a move is accepted quicker than f
more rigid structures. Then, at high temperature, the mec
nism that guides the chain towards the native structure
simply a random walk process that takes into account
rigidity of the conformations. This random process is p
ticular because whereas all the structures have the s
probability to occur on an average, they have not the sa
probability to be reached during the MC* simulation. More-
over, the average time spent, at each time that a given
formation is reached, is also dependent on the conforma
The chain finds the native conformation following this ra
dom walk adapted to lattice model. Omission of rigidity p
rameters would lead to an increase in the probability of
currence of the extended conformations and would giv
wrong view of the mechanism of the kinetics of folding
high temperature.

However, the case of the folding process at high tempe
ture only presents a theoretical interest because, in this c
the chain is always in a denatured phase and when the n
state is reached, it is only for a very short time and then
molecule is not really biologically active.

At low temperature, the acceptance ratio is very select
When temperature goes to zero,a(m→n)→0 if DE.0 and
a(m→n)→1 if DE,0, and the acceptance ratio plays
more important role in the selection of the transitions than
the previous case. The rigidities of the conformations s
play a role, but minor, in the folding process at low tempe
ture. However, an accepted transition cannot lead to an
crease in the energy and all the moves undertaken tow
conformations of lower energy have the same probability
be performed becauseaDE,0(m→n)→1. The chain is
mostly trapped in local minima and the kinetics of folding
very slow.

In nature, at very low temperature, the solvent arou
protein is converted into ice. Then, kinetics of protein fo
ing is simply frozen by the crystallization of the solvent. T
potential used in this work is temperature independent
does not well mimic the effect of the solvent at low tempe
tures. Then, investigations on the mechanisms of the pro
folding at very low temperature remain illusive with suc
potential. However, this study, as well as high-temperat
simulations, present theoretical approaches very useful to
derstand the folding of the proteins at medium temperatu

At medium temperature, the evolution of the chain
wards its native structure is dictated by both rigidities a
energy differences. In order to understand the folding p
cesses, many kinetic paths beginning with the trap confor
tion and ending with the native structure have been co
puted atT50.4, using MC* simulations. They all exhibit
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similar properties and a typical trajectory is shown in Fig.
The native and the trap conformations have very low ene
(ENat5211.5031,ETrap528.9627), and are also very com
pact structures~five contacts for the trap and six for the n
tive conformation!, and then, they are very rigid (wNat

(0)

5wTrap
(0) 50.894). As the trap is the first conformation of ea

trajectory, no transition is accepted during a lot of MC*
steps. As the allowed transitions are only a local modificat
of the chain, when a move is selected and accepted, the c
occurs in a new conformation of low energy and of s
relatively high compacity and then high rigidity. As the tra
sition of the highest probability from this conformation is th
way back to the trap conformation, there are oscillations
very low frequencies in the lower part of the conformation
valley of the trap between the trap and the few conformati
connected to it. The frequency of the accepted moves, c
puted over the lastNf moves~hereNf520), is defined asNf
divided by the number of MC* steps needed to accept th
last Nf moves and is shown in Fig. 9. These moves of lo
frequencies in the trap valley occur during the 2.73105 first
steps, afterwards a conformation among the huge set of t
sition state is reached and permits to escape from this c
formational valley. The transition states, which exhibit co
mon properties~few intrachain contacts, great flexibilities
and high energies!, have a small equilibrium probability o
occurrence, whereas they are easily accessible at a topo
cal point of view as they are not very rigid. On the oth
hand, the mean time of occurrence of these conformation
very short as they are very flexible. Then, the chain evol
from valley to valley following this mechanism. As th
ground states of the other valleys have smaller rigidities
higher energies than the trap of the system, the oscillati
are of higher frequencies. When the main valley, i.e.,
valley of the native state, is reached, the frequencies of t
sitions are very high. In this ultimate funnel, the chain fol
towards the native structure by minimizing its energy. But,
the chain is driving towards the native structure, its conf
mations becomes more and more compact. The folding p
way admits then less and less possibilities of connecti

FIG. 9. Frequency of the accepted moves, computed on the
last accepted transitions~see text!, in the MC* simulation atT
50.4 as a function of the MC* steps.
2-7
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between conformations that are more and more rigid, as
be seen on the last part of the connection graph shown in
10. However, most of the attempted moves are accepted
they guide the chain towards the lower part of the funne
a relatively few steps. In other words, the kinetics of foldi
is slowed down as the chain goes down the funnel, altho
it evolves harshly towards the native structure, with a re
tively high accepted move frequency compared to the
cepted move frequencies in others valleys.

Ten simulations have been carried out at the same t
perature (T50.4) and the logarithm of the occurrence
conformations with energyE during the folding time period
versus the energy has been computed and plotted in Fig
In a simulation performed at thermal equilibrium with a the
mostat, a linear relation between both quantities would h
been found. It appears clearly that during the folding tim
only the part of the spectrum above the dashed line is w
sampled. A linear regression of this region of the spectr
givesn(E)5A exp(2E/T* ) with T* 50.48. The value ofT*
is close to the temperature of the simulation, i.e.,T50.40,
showing that the subspace above the dashed lines is at
mal equilibrium with the bath. The coefficientA is not the
inverse of the partition function of the whole system beca
the conformations of low energies are badly sampled. It
be seen as the inverse of a ‘‘reduced partition function’’ co
puted on the subspace of conformations at equilibrium w
the bath temperature. The conformations of this region
long to valleys other than that of the native state and t
occur with probabilities larger than, but proportional to, th
equilibrium probabilities. Then, at this stage it can be
sumed that the subsystem consisting of all the valleys, ex
that of the native state, is at thermal equilibrium. The tim
needed to reach this partial equilibrium corresponds

FIG. 10. Last connections between the conformations leadin
the native structure.
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the folding time defined above. The conformations of lo
energy which are undersampled will mostly occur during
second stage of the relaxation, appearing for times la
than t fold and smaller thant rel by performing a sampling
mainly localized in the native valley. Fort@t rel , each con-
formation occurs with its equilibrium probability, as i
shown in Fig. 6.

V. CONCLUSION

The results presented in this work emphasize that the
posed MC* method is well adapted to study the dynamics
protein folding. It has been shown that not only the diffe
ence of energies between the conformations but also th
gidity of the conformations have to be taken into account
the MC* simulation in order to sample correctly the confo
mational space. Moreover, the BKL algorithm has be
implemented and would be a good technique to provide lo
temperature studies and rollover behavior@42# observed for
small single domain proteins for which the folding arm
the chevron plot is not linear under native conditions.

Kinetic paths have been studied and some general feat
to give an insight into the mechanism that drives a prot
towards its native structure at medium temperature. Dur
the folding time of this process, only a part of the conform
tional space is sampled in proportion to the Boltzma
weights of the conformations. Afterwards, between the fo
ing and relaxation times, the occurrence of the conformati
of low energy increases and all the conformations occu
proportion to their Boltzmann weights and the thermal eq
librium of the chain is reached.

Finally, this method had been applied only to a sh
chain in order to check its efficiency, but it is easily app
cable to a longer chain on a two- or three-dimensional latt

FIG. 11. Logarithm of the occurrence of the energyE during the
folding times of ten trajectories.to
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